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ABSTRACT Early prediction of clearance mechanisms
allows for the rapid progression of drug discovery and
development programs, and facilitates risk assessment of
the pharmacokinetic variability associated with drug inter-
actions and pharmacogenomics. Here we propose a scien-
tific framework — Extended Clearance Classification
System (ECCS) — which can be used to predict the pre-
dominant clearance mechanism (rate-determining process)
based on physicochemical properties and passive mem-
brane permeability. Compounds are classified as: Class
1A — metabolism as primary systemic clearance mecha-
nism (high permeability acids/zwitterions with molecular
weight (MW) <400 Da), Class 1B — transporter-mediated
hepatic uptake as primary systemic clearance mechanism
(high permeability acids/zwitterions with MW >400 Da),
Class 2 — metabolism as primary clearance mechanism
(high permeability bases/neutrals), Class 3A —renal clear-
ance (low permeability acids/zwitterions with MW
<400 Da), Class 3B — transporter mediated hepatic uptake
or renal clearance (low permeability acids/zwitterions
with MW >400 Da), and Class 4 — renal clearance (low
permeability bases/neutrals). The performance of the
ECCS framework was validated using 307 compounds
with single clearance mechanism contributing to >70%
of systemic clearance. The apparent permeability across

Electronic supplementary material The online version of this article
(doi:10.1007/511095-015-1749-4) contains supplementary material, which is
available to authorized users.

D4 Ayman F El-Kattan
ayman.el-kattan@pfizer.com

Pfizer Global Research and Development, Pfizer Inc.
Groton, Connecticut 06340, USA

Pfizer Global Research and Development, Pfizer Inc.
Cambridge, Massachusetts 02139, USA

clonal cell line of Madin—Darby canine kidney cells, se-
lected for low endogenous efflux transporter expression,
with a cut-off of 5%107% cm/s was used for permeability
classification, and the ionization (at pH7) was assigned
based on calculated pKa. The proposed scheme correctly
predicted the rate-determining clearance mechanism to
be either metabolism, hepatic uptake or renal for ~92%
of total compounds. We discuss the general characteristics
of each ECCS class, as well as compare and contrast the
framework with the biopharmaceutics classification system
(BCGS) and the biopharmaceutics drug disposition classifi-
cation system (BDDCS). Collectively, the ECCS frame-
work is valuable in early prediction of clearance mecha-
nism and can aid in choosing the right preclinical tool kit
and strategy for optimizing drug exposure and evaluating
clinical risk of pharmacokinetic variability caused by drug
interactions and pharmacogenomics.

KEY WORDS extended clearance classffication system
(ECCS) - hepatic uptake - metabolism - permeability - renal
clearance

INTRODUCTION

To increase the flow of new drugs to patients, the pharmaceu-
tical industry is focused on designing and developing mole-
cules to achieve systemic drug exposures capable of robustly
modulating disease relevant biological mechanisms in humans
[1, 2]. Clearance rate is a critical determinant of drug expo-
sure in the systemic circulation and consequently at the phar-
macological target compartment. Hence, it is a key compo-
nent in determining the therapeutic efficacious dose.
Definitive assessment of a compound’s clearance mechanisms
takes place during a human radiolabel ADME mass balance
study in clinical development stage, while preliminary infor-
mation can be obtained via first in human studies [3].

@ Springer



3786

Varma, Steyn, Allerton and El-Kattan

However, given the focus on bringing forward develop-
ment compounds with a high probability of testing the
biological mechanism in humans, an earlier understand-
ing of rate-determining clearance mechanism is required
to design compounds with optimized disposition proper-
ties. Currently significant investment is required to pre-
dict the human clearance mechanism and the clearance
rate from human wm vitro systems, as well as pre-clinical
experiments. Understanding of the predominant clear-
ance mechanism is essential in ensuring the correct
ADME screen sequences are selected to guide medicinal
chemistry design and to identify molecules capable of
achieving the systemic and target exposure required.
In the absence of this, molecular design may be opti-
mized on parameters which are not relevant to the sys-
temic clearance of a compound. As such, a framework
to provide prospective guidance as to the predominant
clearance mechanism for a given series or compound,
would increase the efficiency of medicinal chemistry de-
sign in bringing forward “best-in-class” compounds. In
addition, an early understanding of the clearance mech-
anism enables successful prediction of the changes in the
systemic exposure caused by drug-drug interactions
(DDIs) or genetic polymorphisms of enzymes and/or
transporters, which are important considerations in the
nomination of a clinical development candidate [4].
The major drug elimination routes in human are
metabolism, biliary, and renal, dominated by the liver
and kidney [4]. It should be emphasized that a drug’s
predominant elimination process such as metabolism,
biliary or renal excretion may not be always its rate-
determining step in systemic clearance — the latter being
the determinant of systemic drug exposure [5—11]. For
example, atorvastatin has a high extent of metabolism
(>90% of parent eliminated as metabolites), however,
active uptake mediated by organic anion transporting
polypeptide (OATP) transporters is the rate-determining
step of its clearance [12]. Similar evidences were reported
with bosentan, cerivastatin, fluvastatin, and repaglinide

£+ (PSinfux + PSpa) - CLin

[5-11]. In addition, compounds such as valsartan and
rosuvastatin are predominantly excreted unchanged in
bile while active uptake mediated by OATP transporters
is the rate-determining step of their clearance. Aligning
the selection of in vitro tools to characterize the rate-
determining process in the clearance mechanism of a
compound series is essential in ensuring success in
efficiently modulating clearance through design itera-
tions. It is well understood that the physiochemical
properties of a drug play a major role in guiding its
clearance mechanism (rate-determining process), as well
as elimination from the body.

In this article, we discuss the physiological basis of clear-
ance and the associated drug-related descriptors. Bringing to-
gether these multiple facets, we propose and validate a novel
classification system to enable prediction of the predominant
clearance mechanism (rate-determining process) that can be
used in the drug discovery and development settings.

HEPATIC CLEARANCE

Hepatic clearance is determined by the liver blood flow, drug
binding in blood, and the intrinsic capability of the liver to
clear the drug, which is dependent on drug interactions with
specific drug metabolizing enzymes and membrane trans-
porters [8, 10, 13]. Recognition of the involvement of the
transporter-enzyme interplay in defining hepatic clearance is
needed to achieve accurate clearance predictions (for reviews,
[5, 8,9, 14]). The mathematical expression defining the over-
all hepatic intrinsic clearance comprising of membrane trans-
port and metabolism is given by (Eq. 1) [10, 15, 16]:

(Psinﬂux + Pspd) : CLinL
(Psemux + Pspd + CLinL)

CLinp = (Eq.1)

Based on this “extended clearance term”, total hepatic
clearance (CLy) assuming well-stirred conditions is given by

(Eq. 2) [13]:

CLy = Q-

Qh . (PSeHqu + PS])d + CI‘inl) + fb . (PSinﬂux + Pspd) : CI‘inl

= Qh -Eh (EqQ)

PS; s and PS.qu are the active (transporter-mediated)
sinusoidal influx and efflux clearances, respectively. PS;q
represents passive diffusion clearance (Fig. 1). CLy, is
the sum of the metabolic and biliary intrinsic clearances
(CLin¢mect CLingpite), Qp is the liver blood flow, Ej is
the hepatic extraction ratio, and f;, is the unbound frac-
tion in blood. For drugs subjected to metabolic
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clearance and hepatic influx or efflux clearance, consid-
cration of one process alone will not provide an all-
inclusive understanding of hepatic clearance and thus
the systemic pharmacokinetics [5, 9, 10, 17-20].
However, Eq. 2 is greatly simplified to Eq. 3 when both
active transport is negligible (PSiyaux & PScux<< PSpq)
and passive diffusion clearance greatly exceeds the sum
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Fig. I Schematic representation of the processes involved in the hepatic and renal clearance of drugs. Transporter-enzyme interplay in the hepatic clearance can
be mechanistically described by the extended-clearance concept, where the rate-determining process for hepatic clearance is defined by metabolic/biliary
clearance or uptake clearance or a combination of both. Renal clearance is a function of glomerular filtration, active secretion and tubular reabsorption. When
the passive permeability is high, renal clearance tends to be negligible due to potentially complete reabsorption. However, when passive permeability is low, renal
clearance can be a significant contributor to systemic clearance driven by glomerular filtration and active secretion. PC — proximal nephron cell. See the text for

definitions of the parameters.

of intrinsic metabolic and biliary clearance (PSpq >>
C:Lint,met + CLint,bile) [1 3] :

f\b . CILint

CL, = —_—
v = Q Q,, + - Cliy,

=Q, Ey (Eq.3)

This expression has been routinely applied in predicting
clearance of cytochrome P450 (CYP) and other enzyme sub-
strates [21-23].

Since a large number of drugs are metabolized by the CYP
enzymes localized in the liver, human liver microsomal stabil-
ity 1s typically assessed in early discovery to quantify and pre-
dict human clearance. Other major metabolizing enzymes of
interest in drug discovery are UDP glucuronosyltransferases
(UGTs), sulfotransferases, aldechyde oxidase and glutathione
transferase (GST), among others [4, 24]. Drug uptake and

efflux transporters expressed in a variety of organs including
the intestine, liver, kidney and brain play a pivotal role in drug
disposition, therapeutic efficacy, and toxicity [25]. Uptake and
efflux transporters of interest in drug discovery include organ-
ic anion-transporting polypeptides (OATPs), organic anion
transporters (OATSs), organic cation transporters (OCTs), p-
glycoprotein (P-gp) and breast cancer resistance protein
(BCRP) [25-27].

Hepatic uptake can be the rate-determining step for sys-
temic clearance of drugs that are either eliminated unchanged
in the bile or eliminated as phase I/II metabolites. In liver,
uptake transporters OATP1B1, OATP1B3, and OATP2B1
are expressed on the sinusoidal membrane and play a pivotal
role in the active uptake of many clinically important anionic
drugs, including HMG-CoA reductase inhibitors (statins) and
angiotensin Il receptor antagonists (sartans) [17, 25, 28-30]. A
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number of studies suggested that active uptake could be the
rate-determining step in hepatic clearance, not only for com-
pounds that are metabolically stable such as rosuvastatin [31]
and pravastatin [32—34], but also for compounds that are
extensively metabolized such as, atorvastatin [12, 35],
glyburide [36, 37] and repaglinide [38, 39]. Clinically relevant
DDIs leading to changes in systemic exposure of these drugs
are primarily attributed to the inhibition of hepatic uptake
mediated by members of the OATP family rather than the
inhibition of hepatic metabolism or biliary efflux [9, 12, 40].
Furthermore, polymorphism in SLCOIBI (encoding
OATPI1BI1) has been reported to lead to major changes in
systemic exposure of statins, which in turn, regulates the rela-
tive exposure in peripheral tissue such as muscle and the risk of
toxicity such as rhabdomyolysis [41—44]. Overall, these exam-
ples underscore the crucial role of hepatic uptake transporters
(OATDPs) in determining the hepatic clearance rate and plas-
ma exposure of these molecules. While hepatic uptake could
be the rate-determining process in the systemic clearance of
several OATP transporter substrates, enzymatic metabolism
and/or biliary efflux to a large extent dictate hepatic exposure
and elimination from the body. For example, atorvastatin is
metabolized primarily by the CYP3A4, while repaglinide and
cerivastatin are metabolized by CYP2C8 and CYP3A4, with
an overall extent of metabolism >90%.

Physicochemical Determinants of Active Hepatic
Uptake

OATPs are the key transporters involved in active hepatic
uptake [27]. Limited datasets are available to draw definite
conclusions on the physicochemical attributes of the OATP
substrates. In a recent analysis of 219 diverse commercial and
proprietary compounds with human OATP substrate data,
our group reported that the ionization state plays a key role
in substrate interaction with OATPs [45]. Acids and zwitter-
ions form the majority of the OATPs substrates, with almost
no bases showing functional affinity. The majority of the
OATPs substrates have molecular weight greater than
400 Da, and also possess high polar surface area.
Lipophilicity may have limited association, which is reflected
in a wide range of logD values for well-known OATP sub-
strates (e.g., rosuvastatin, logD5 4 -1.9; bosentan, logD 4 2.4)
[27]. Additionally, active uptake could be the rate-
determining step in the hepatic clearance of compounds with
low permeability (e.g., pravastatin, rosuvastatin, valsartan)
and high permeability (e.g., atorvastatin, cerivastatin,
glyburide, repaglinide and telmisartan) drugs, suggesting that
membrane permeability alone is not an indicator in defining
the role of uptake transport towards clearance — relative rate
of active transport and passive transport is an important factor
[6, 11, 27]. Collectively, evidence suggests that hepatic active
uptake could be the predominant clearance mechanism for
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acids and zwitterions with a molecular weight >400 Da, irre-
spective of their membrane permeability.

Physicochemical Determinants of Hepato-Biliary
Transport

Drug secretion into bile is predominantly driven by mem-
brane transporters, with the involvement of canalicular efflux
transporters, MRP2, BCRP, and P-gp [46, 47]. MRP2 and
BCRP were shown to drive biliary excretion of various organ-
ic anions, including glutathione and glucuronide conjugates.
For example, MRP2 and BCRP drive the biliary elimiation
of pravastatin and rosuvastatin, respectively [17, 27]. P-gp is
typically known to efflux basic hydrophobic drugs. While sub-
strate affinity towards canalicular efflux transporters is a pre-
requisite for active secretion into bile, it is evident that hepatic
sinusoidal uptake is the rate-determining step in the hepatic
clearance of compounds eliminated in bile (Eq. 2). For exam-
ple, systemic clearance of valsartan is determined by OATP-
mediated transporter, while about 80% of the dose is excreted
in bile as parent [48, 49]. Since hepatic uptake is a key process
in hepatobiliary transport, the dominant molecular features of
drugs excreted in bile are (similar to those discussed in previ-
ous section): ionization state, molecular weight, lipophilicity,
and polarity [45, 50-52]. Molecular weight has been com-
monly used as a physicochemical determinant of biliary elim-
ination in several preclinical species and human, where higher
molecular weight compounds show a greater propensity for
biliary excretion, likely due to their active hepatic uptake [53,
54]. Yang ¢t al., analyzed a dataset compiled from published
reports and suggested a molecular weight threshold of 400
and 475 for organic anions in rat and human, respectively
[50]. The distinct molecular weight cut-off noted for biliary
elimination (BE) may indicate that substrate specificity of the
transporters involved in hepato-biliary transport is potentially
associated with molecular size. Kato et al. studied the substrate
affinity of the cephalosporins for MRP2 and BCRP and sug-
gested involvement of efflux pumps in the molecular weight-
dependent biliary excretion of p-lactam antibiotics in rats
[55]. However, the fact that canalicular efflux transporters
have much wider substrate specificity implies that secretion
across the canalicular membrane is not selective to a certain
molecular size [56—-60]. Our recent analysis using a sizable
dataset showed that human OATPs and rat Oatplb2 sub-
strates are acidic in nature and also tend toward larger molec-
ular weight (>400 Da) [45]. Furthermore, predominant pres-
ence of large MW acids in the list of drugs with significant
biliary elimination suggests that the substrate specificity of
OA'TPs, which particularly transport acids with high molecu-
lar weight, is the key driver for hepatobiliary elimination.
Opverall, polar acidic drugs with high molecular weight are
taken up by hepatoselective OATP transporters and conse-
quently eliminated in bile. These properties are also associated
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with low passive permeability [45, 61]. Nevertheless, rare ex-
ceptions to these general observations are seen with quaterna-
ry ammonium compounds (MW <300 Da), which are exten-
sively excreted in bile due to their aflinity to OCT1 and P-gp
[62].

Physicochemical Determinants of Metabolism

Generally, lipophilic drugs undergo metabolism to form hy-
drophilic metabolites, which have limited passive membrane
permeability, to allow their removal from the body by excre-
tion in urine and/or bile. Intuitively, this means drugs with
good permeability are predominantly metabolized in the
body. Benet and colleagues proposed the biopharmaceutics
drug disposition classification system (BDDCS) on the basis
of the apparent trend between permeability and extent of
metabolism [63-65]. Generally, once absorbed, highly per-
meable drugs are extensively metabolized (>70%) before be-
ing excreted/eliminated from the body as phase I and/or
phase II metabolites. For such drugs, provided they are not
substrates for hepatic active uptake transporters, hepatic clear-
ance can be directly assessed from metabolic clearance alone
(Eq. 3).

Lipophilicity (LogP or LogD5 4) has been correlated with a
wide array of ADME processes, including solubility, mem-
brane permeability and affinity for drug metabolizing en-
zymes [66—68]. We previously studied the physicochemical
determinants of multiple processes involved in the oral bio-
availability of drugs [69, 70]. It is noted that gut and hepatic
extraction via metabolism, are most influenced by lipophilic-
ity, where drugs with cLogD; 4> 3 demonstrate high extrac-
tion [69]. The ionic charge of the chemical substrate is also an
important determinant, with bases tending to be more readily
metabolized by the enzymes. Also 1onic charge is linked to
affinity for specific drug metabolizing enzymes. For example,
CYP2C9 substrates are relatively acidic, while CYP3A and
CYP2D6 substrates are either basic or neutral [71, 72].
However, no generalization can be made with respect to ionic
charge dependency due to the presence of a wide variety of
phase I and phase II metabolizing enzymes (CYPs, UGTs,
etc.).

RENAL CLEARANCE

Renal clearance is determined by glomerular filtration, tubu-
lar secretion, and reabsorption processes, and can be mathe-
matically described by:

CLiwa = (f3-GFR~+ CLgc) (I = Frus) (Eq.4)

where GFR is glomerular filtration rate, CL is renal secre-
tory clearance and I, is the fraction of filtered and secreted

drug that is reabsorbed. Assuming a well-stirred model, CL.
can be expressed as (Eq. 5):

fb' CLint,scc
r Qr + fb' OIJint,st'c

ClLee= Q (Eq.5)

Where Q) is the renal blood flow and CLy s is the intrin-
sic secretory clearance that can be described by:
PSinﬂux.b . Psefﬂux,a
(Pseﬁlux,b + Psefﬂux,a)

CLint,scc = (Eq6)

PSintuxchs PSeituxchs PSinflux.as and PScgux o are influx and
efflux intrinsic transport clearances across the basolateral
and apical membranes of proximal tubule cells, respectively
(Fig. 1). Glomerular filtration is the ultra-filtration of about
10% of total renal blood flow at the glomerulus of the nephron
and 1s defined by the blood flow rate and f;, (unbound blood
fraction). Glomerular filtration occurs for all drugs however,
its contribution to total clearance is typically low due to low
GFR (1.78 mL/min/kg). Tubular secretion facilitates trans-
port of compounds from the plasma into the proximal tubular
lumen, which is predominantly controlled by active trans-
porters and 1s therefore dependent on transporter kinetics,
fj,, and the blood flow rate [73, 74]. Many compounds under-
go tubular reabsorption from urine into blood all along the
nephron, due to the high concentration gradient created by
the water reuptake process [75]. The degree of reabsorption
mainly depends on passive permeability and is also influenced
by urine flow and pH. Nevertheless, uptake and efflux trans-
porters localized on the luminal (apical) membrane at the
proximal tubuli may contribute to the reabsorption process
[76, 77].

Active renal secretion involves transporters that facilitate
drug uptake across the basolateral membrane of proximal
tubule cells from blood and efflux across the apical membrane
into lumen. Apparent low passive permeability across the
basolateral membrane compared to the apical membrane
[78] and a high counter concentration-gradient created by
water reabsorption makes the contribution of passive tubular
secretion negligible, if any. It is recognized that the
polyspecific members of the organic ion transporter family
(SLC22) primarily localized on the basolateral membrane of
proximal tubuli play a pivotal role in the renal secretion pro-
cess — the members consists of organic cation transporter 2
(OCT2) and organic anion transporters 1, 2 and 3 (OAT1,
OAT2 and OATS3) [79-61]. Although, active secretion in-
volves passage across two membranes of proximal tubule cells,
drug uptake from the blood compartment to cell will be the
rate-determining process towards systemic clearance [16], es-
pecially for hydrophilic drugs with minimum passive and ac-
tive back flux. There may be exceptions for equilibrative fa-
cilitative transporters like OCT2, since their bidirectional
function can reverse transport when the free intracellular
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substrate concentration is substantially higher than free blood
concentration.

Physicochemical Determinants of Renal Clearance

Drugs with sufficient passive permeability can be efficiently
reabsorbed, as the passive reabsorption process occurs
throughout the length of the nephron; unlike the active renal
secretion that predominantly occurs at the proximal tubule.
Therefore, the physicochemical determinants of passive mem-
brane permeability may reasonably describe renal drug clear-
ance [82]. Generally, renal clearance decreases with increas-
ing lipophilicity and shows a positive correlation with polar
descriptors. Our previous studies demonstrate a distinct in-
verse relationship between MDCK-LE (Madin-Darby canine
kidney- low efflux cells) permeability, the percentage of parent
excreted in urine, and human renal clearance rate [61].
Membrane permeability requires lipid solubility as well as
desolvation of associated hydrogen-bonded water molecules
[83, 84]. The relationship of renal clearance with lipophilicity
and polar descriptors can therefore be attributed to their effect
on the passive reabsorption process. Hydrophobicity and ba-
sicity are indicated to be the principal determinants of sub-
strate interaction with OCTs, while hydrophobicity and acid-
ity are associated with substrate affinity for OATs [853].
However, most of the high affinity substrates to these trans-
porters are relatively hydrophilic (cLog P<0) [79, 86].
Furthermore, hydrogen bonding ability seems to be an advan-
tageous mechanism to stabilize the substrate-transporter com-
plex [85]. Taken together, ionized compounds with low per-
meability are predominantly renally secreted due to (i) an
ability to interact with the renal transporters at the proximal
tubuli and (i) a limited ability for passive reabsorption process
along the length of the nephron [82, 8§7].

PROPOSAL OF EXTENDED CLEARANCE
CLASSIFICATION SYSTEM (ECCS)

From the above review, it is clear that a drug’s predominant
clearance mechanism is defined by its physiochemical proper-
ties — wherein ionization state, molecular weight and mem-
brane permeability show a distinct association [45, 61, 70, 82].
We therefore hypothesized that these fundamental drug prop-
erties could be used to predict a molecule’s predominant
clearance mechanism, or rate-determining process towards
its systemic clearance. Based on these fundamentals, we
propose the extended clearance classification system
(ECCS), where drugs can be classified into 6 classes
(Fig. 2): Class 1A — low molecular weight, high permeabil-
ity acids and zwitterions, for which metabolism is the predom-
inant clearance mechanism; Class 1B — high molecular
weight, high permeability acids and zwitterions, for which
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Fig.2 The framework of extended clearance classification system (ECCS) for
identifying the predominant mechanism that determines systemic clearance of
drugs.

hepatic uptake 1s the predominant clearance mechanism;
Class 2 — high permeability bases and neutrals, for which
metabolism is the predominant clearance mechanism; Class
3A — low molecular weight, low permeability acids and zwit-
terions, for which renal clearance is the predominant clear-
ance mechanism; Class 3B — high molecular weight, low per-
meability acids and zwitterions, for which hepatic uptake or
renal elimination is the predominant clearance mechanism;
and Class 4 — low permeability bases and neutrals, for which
renal clearance is the predominant clearance mechanism. We
derived a cut off value of 5x107° em/s for the membrane
permeability to define high and low permeability classes,
based on a previous analysis conducted by our group [61].
Using a smaller set of compounds with apparent membrane
permeability measured across a clonal cell line of MDCK-LE,
this statistically derived cut-off value distinguished between
high and low intestinal absorption (Fa) and renal clearance
with high sensitivity and specificity. The molecular weight
cutoff (400 Da) enables distinction between OATP substrates
(Classes 1B and 3B) and non-substrates (Classes 1A and 3A)
within the acids and zwitterions. For Class 1B compounds,
their elimination is usually via excretion of phase I and II
metabolites (>70% of dose), while for Class 3B uptake sub-
strates, their elimination is usually as parent in the bile, despite
the rate-determining systemic clearance in both classes being
dominated by hepatic uptake (Fig. 1).

Fig. 3 Prediction success of predominant clearance mechanism by ECCS, P>
(@) when both the experimental and in silico permeability values were used
(n=307), and (b) when only experimental permeability data was used (n =
175). Dotted line in Class 3B represent percentage of drugs with hepatic
uptake and renal as predominant clearance mechanism.
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DATA ANALYSIS AND RESULTS OF ECCS
VALIDATION

A database of human clearance mechanisms was developed
based on published data reported by Obach et al. [70], Varma
et al. [69, 82] Berellini et al. [88] and Lombardo et al. [89]. Of
the collated dataset of 1003 drugs, information on the clear-
ance mechanism was sought for each drug and 739 drugs
remained that had appropriate information available in the
public domain. At this point, we separated out 307 drugs that
had a single clearance mechanism (metabolism, renal or he-
patic uptake) contributing to >70% of the total clearance. For
the remaining drugs, the clearance either involved multiple
mechanisms, lacked quantitative information on competing
clearance mechanisms or could not be assigned due to con-
flicting information or did not meet our criteria (molecular
weight <700 Da) of small molecule drugs. As discussed, for
several drugs hepatic uptake mediated by OATPs is the rate-
determining process in the hepatic clearance of drugs, al-
though they may subsequently be metabolized or excreted
unchanged in the bile [9, 11, 12, 27]. Similarly, biliary clear-
ance 1s a two-step process primarily involving active sinusoidal
uptake and active canalicular efflux and the systemic clear-
ance is assumed to be determined by hepatic uptake [45].
The major difference between this dataset and what is report-
ed by Lombardo et al. [89] is the addition of hepatic uptake as
a rate-determining process of clearance [90]. Hepatic uptake
was assigned as the primary clearance mechanism through the
direct availability of transporter data, or from clinical drug-
drug interactions and pharmacogenomic data [7, 27, 90-92].
For drugs that showed biliary elimination, the rate-
determining step to their systemic clearance was assumed to
be hepatic uptake as supported by their substrate affinity to
hepatic uptake transporters particularly OATPs, as discussed
above [43].

The apparent permeability across MDCK-LE was used for
permeability classification and the ionization was assigned
based on calculated pKa-values using MoKa (version 2.5.4,
Molecular discovery). Experimental permeability data was
available for 175 of the 307 clinical compounds for which
the predominant clearance mechanism had been identified.
For the remaining 132 drugs, permeability values were ob-
tained using a validated continuous i silico model developed
in Pfizer based on >100,000 data points (generated using the
same experimental conditions) [93].

With 307 drugs, ECCS correctly predicted the predomi-
nant clearance mechanism on average for ~92% of the cases
(Fig. 3a). Prediction success for individual classes was also high
(>85%,), except for in Class 4, where the prediction success
was ~75%. For instance, high permeability bases and neutrals
are expected to be cleared by metabolism (Class 2) and 95% of
172 drugs were correctly predicted. Similarly, the clearance
mechanism of ~89% of 36 Class 3B drugs is correctly
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predicted with the rate-determining systemic clearance
mechanism as either hepatic uptake or renal. Also no-
tably, for 12 of the 14 high permeability acids and
zwitterions with MW >400 Da (Class 1B), hepatic uptake
primarily mediated by OATP transporters is the rate-
determining step for their systemic clearance, although these
drugs are known to be almost completely metabolized in the
liver and eliminated/excreted as phase I and II metabolites.
When only drugs with experimental permeability data (n=
175) were used, the overall prediction accuracy was un-
changed, but there was some improvement for Class 1B and
4 predictions (Fig. 3b). Overall, ECCS provides an excellent
framework for predicting the predominant clearance mecha-
nism for compounds, and has been validated with a sizable set
of drugs.

GENERAL CHARACTERISTICS OF THE ECCS
CLASSES

Class |A

These are acidic or zwitterionic compounds with high perme-
ability MDCK-LE P,,, =5 % 107° em/s) and low molecular
weight <400 Da. Class 1A compounds are cleared by metab-
olism to a greater extent than 70%. Neither uptake nor efflux
transporters affect their systemic clearance and blood expo-
sure. Examples of Class 1A drugs include non-steroidal anti-
inflammatory drugs like ibuprofen and ketoprofen (Table I).
Consistent with their acidic nature, they are generally metab-
olized by CYP2C enzymes [146], although other metabolic
pathways like glucuronidation prevail for certain drugs (eg.
valproic acid). From the 307 compounds investigated, 29 were
classified as Class 1 A compounds, with metabolism being iden-
tified as the predominant clearance mechanism for ~90% com-
pounds (Fig. 3). Clinafloxacin and milrinone are examples of a
misprediction, where the observed clearance mechanism is re-
nal. Human  vitro tools aligned with the metabolic clearance
mechanism, such as human liver microsomes (HLM) or
human hepatocytes for CYPs and human UGTs for
glucuronidation, can be effective tools for clearance pre-
diction of Class 1A compounds [147].

Class IB

These are acidic or zwitterionic compounds with high perme-
ability (MDCK-LE P,,,>5>10"° cm/s) and high molecular
weight (>400 Da). Class 1B compounds are predominantly
systemically cleared by active hepatic uptake mediated by
OATPs (Eq. 2; Fig. 1). Once cleared from the blood compart-
ment to the liver compartment via these active uptake trans-
porters, Class 1B compounds are metabolized and excreted in
the bile and/or urine as phase I and phase II metabolites with
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Table I Representative Examples per ECCS Class and the Major Transporters and Metabolizing Enzymes Involved in Their Clearance

ECCS class Drug Metabolic enzymes Primary transporters References

Class 1A Acety! salicylic acid Carboxylesterase 1/2 [94]
Diclofenac CYP2C9, UGT2B7 [95, 96]
Ibuprofen CYP2CI19,CYP2C9 [97, 98]
Rosiglitazone CYP2C8 [99]
Valproic acid UGT2B7, UGT A6 and UGT IA9. [100]
Warfarin CYP2C9 [101]

Class 1B Atorvastatin CYP3A4 OATPs [102, 103]
Bosentan CYP2C9, CYP3A4 OATPs [104]
Cerivastatin CYP2C8, CYP3A4 OATPs [105]
Fluvastatin CYP2C9 OATPs [106]
Glyburide CYP2C9, CYP3A4 OATPs [36]
Pitavastatin UGTIA3 and UGT2B7. OATPs [107, 108]
Repaglinide CYP2C8, CYP3A OATPs [19,39]
Telmisartan UGTs OATPs [109]

Class 2 Abacavir Alcohol dehydrogenase [ra]
Alfentanil CYP3A4 (11 112]
Amitriptyline CYP2D6 and CYP2CI19 [113]
Amlodipine CYP3A4 [I14]
Budesonide CYP3A4 [I'5]
Caffeine CYPIA2 [I16]
Diazepam CYP3A4, CYP2CI19 7]
Diltiazem CYP3A4 [118]
Erlotinib CYP3A4 [119]
Felodipine CYP3A4 [120]
Imipramine CYP2D6 [121]
Labetalol UGTIAI [122]
Midazolam CYP3A4 [123]
Morphine UGT2B7 p-glycoprotein [124, 125]
Nifedipine CYP3A4 [126]
Omeprazole CYP2CI9 [127]
Propranolol CYP2D6 [128]
Sildenafil CYP3A4 [129]
Triazolam CYP3A4 [112]
Verapamil CYP3A4 [120]
Voriconazole CYP2C19, 2C9, 3A4 [130, 131]
Ziprasidone Aldehyde Oxidase, CYP [132]

Class 3A Amoxicillin OAT | [133]
Ceftizoxime OAT I, OAT3 [134]
Furosemide OAT I, OAT3 [135]
Penicillin_ G OAT I, OAT3 [136]

Class 3B Piperacillin OAT I, OAT3
Methotrexate OAT I, OAT3 [137, 138]
Rosuvastatin OATPs, BCRP [139]
Valsartan OATPs, MRP2 [48]

Class 4 Acyclovir OAT |, OAT3 [140]
Famotidine OCT2 [141
Lamivudine OCT2, MATEs [142, 143]
Ranitidine OCT2 [144]
Sitagliptin OAT3 [145]

@ Springer



3794

Varma, Steyn, Allerton and El-Kattan

an extent of metabolism higher than 70%. A total of 14 com-
pounds in the dataset fulfilled the Class 1B criteria,
from which 12 (86%) are known to have active hepatic
uptake as the rate-determining process for their systemic
clearance. Some of the statins (e.g., atorvastatin,
cerivastatin and fluvastatin,) and others (e.g., repaglinide
and telmisartan) are examples of this class (Table I).
These drugs are substrates to OATPIB1 and/or
OATPIB3 transporters and are predominantly metabo-
lized by CYP3A/CYP2C/UGT enzymes [6, 11, 27]. As
illustrated in Fig. 4, OATP1B1/1B3 inhibitors such as
cyclosporine, rifampin, and gemfibrozil show a signifi-
cant impact on the plasma exposure of atorvastatin,
cerivastatin, fluvastatin, and pitavastatin, while CYP in-
hibitors such as clarithromycin, erythromycin,
itroconazole, fluconazole, and diclofenac show a lower
impact [35, 148—159] — an indication of active transport
being the predominant systemic clearance mechanism
for these drugs. The two compounds of Class 1B that
were mispredicted are levocabastine and sitafloxacin,
which possessed a calculated permeability marginally
above the cut-off (~6x107% c¢m/s), but show renal
clearance as the predominant mechanism
(Supplementary Table 1). Nevertheless, all the com-
pounds with available experimental permeability data
were correctly predicted in this class (Fig. 3b). This pre-
dominant clearance mechanism increases the reliance of
Class 1B compounds on human i wvitro systems such as
suspension hepatocytes and sandwich culture human he-
patocyte (SCHH) for predicting active hepatic uptake
mediated clearance [27, 49, 91, 160-164]. In vitro tools
aligned with predicting the metabolic components of
drug elimination, such as human liver microsomes, will
underestimate systemic clearance, although they can be
critical for modelling liver concentrations [91, 1653].
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Fig. 4 The impact of OATPIBI and CYPs inhibitors on the plasma AUC of
ECCS Class |B drugs atorvastatin, pitavastatin, cerivastatin, and fluvastatin
[148-159]. Rifampicin and cyclosporine are OATPs inhibitors, gemfibrozil is
an inhibitor of OATPs and CYP2C8, others are probe inhibitors for CYPs.
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Class 2

These are neutral or basic compounds with high permeability
(MDCK-LE P, =5% 107° em/s). Class 2 compounds are
predominantly cleared by metabolism. They cross the
basolateral membrane of the hepatocytes via passive diffusion
and are metabolized and excreted in the urine/bile as phase I
or II metabolites. Inhibitors for metabolizing enzymes have a
significant impact on the plasma exposure of Class 2 mole-
cules, given the predominance of this clearance mechanism.
For example, the CYP3A substrate midazolam, increased
plasma exposure by 2541% when co-administered with the
potent CYP3A4 inhibitor ritonavir [166]. A total of 172 of the
compounds investigated are classified as Class 2 compounds,
of which 95% are cleared by metabolism (Fig. 3).
Representative examples of Class 2 include amitriptyline, di-
azepam, imipramine, midazolam, nifedipine, sildenafil, and
voriconazole (Table I). Fluconazole and practolol are the ex-
amples of mispredictions, where the measured permeability is
high but these drugs are cleared renally. Due to the expected
rapid-equilibrium between blood and liver compartments,
systemic clearance of Class 2 compounds can be described
by Eq. 3; and HLM, human hepatocytes or other human
in vitro systems aligned with the underlying metabolic process
are effective in predicting the clearance of this class of
compounds.

Class 3A

These are acids or zwitterions with low i vitro permeability
(MDCK-LE P,,, <5X 107° cm/ s) and low molecular weight
(MW <400 Da). They are predominantly cleared by renal
clearance and eliminated as unchanged drug in urine [45,
167, 168]. Renal uptake transporters such as OAT1 and
OAT3 transporters may play a role in the renal elimination
of Class 3A compounds. From the list of compounds investi-
gated, 24 are classified as Class 3A, from which, ~92% fits the
criteria of renal clearance as the major clearance mechanism
(Fig. 3). Gompounds such as amoxicillin, ciprofloxacin, furo-
semide and ofloxacin are examples on Class 3A molecules.
However, nateglinide and torsemide were mispredicted to
be Class 3A, while their predominant clearance mechanism
is hepatic uptake and metabolism, respectively. Renal clear-
ance can be predicted by single species scaling or physiologi-
cally based pharmacokinetic models [169].

Class 3B

These are acids or zwitterions with low permeability (MDCK-
LE P, <56X% 10~% cm/s) and high molecular weight (>400
Da). Class 3B compounds are predominantly cleared by he-
patic active uptake and/or renal clearance, followed by elim-
ination as unchanged drug in bile and/or urine [45, 167,
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168]. Unlike hepatic uptake compounds, renally cleared com-
pounds span a wide molecular weight range; and therefore,
Class 3A represent primarily renal clearance, but Class 3B
compounds are cleared either by hepatic uptake or renal.
Hepatic and renal uptake transporters such as OATP1BI,
OATPI1B3, OATP2B1, OAT1, and OAT3 transporters play
a key role in the clearance of Class 3B compounds. Therefore,
substrate specificity to OATPs versus OATs dictates the clear-
ance pathway to be via hepatic or renal (Table I). From the list
of compounds investigated, 36 are classified as Class 3B, from
which, ~89% fits the criteria of hepatic uptake or renal as the
major clearance mechanism (Fig. 3). Methotrexate, piper-
acillin, rosuvastatin and valsartan are representative ex-
amples. On the other hand, montelukast and
tesaglitazar were wrongly predicted to be Class 3B com-
pounds, while their observed clearance mechanism is
metabolism. The mispredictions for these relatively lipo-
philic compounds could be due to underestimation of
permeability caused by potential low solubility and/or
non-specific binding artifacts within the permeability as-
say. Similar to Class 1B compounds, the prediction of
active hepatic uptake clearance can be achieved via
i vitro hepatocyte uptake studies [109, 160], whereas
metabolic stability studies would underestimate the
clearance of these molecules. Renal clearance can be
predicted by single species scaling or physiologically
based pharmacokinetic models [169].

Class 4

These are neutral or basic compounds with low permeability
(MDCK-LE P, <5X% 107° em/s). Class 4 compounds are
predominantly systemically cleared by glomerular filtration
and active renal secretion that is mediated by basolateral
transporters such as OCT2, OAT1, OAT2 and OAT?3
(Table I). While OCT?2 generally prefer basic compounds,
OATs are also capable of transporting bases along with acids
and zwitterions [82, 170]. With the current dataset, 32 com-
pounds are classified as Class 4, from which 75% were
predominantly cleared in urine (Fig. 3a). However, pre-
diction accuracy improved to 84% when only com-
pounds with experimental permeability data were
assessed (Fig. 3b). Acyclovir, famotidine and sitagliptin
are some examples of this class. Most of the Class 4
drugs which were mispredicted to be metabolically
cleared (e.g., amiodarone, aprepitant and maraviroc)
were found to be lipophilic in nature (LogD74>2). We
believe that the permeability of these compounds was
underestimated using the current permeability assay,
due to potential low solubility and/or non-specific bind-
ing issues. Renal clearance can be predicted by single
species scaling or physiologically based pharmacokinetic
models [169].

BCS, BDDCS AND ECCS: COMPARE
AND CONTRAST

Solubility and membrane permeability are the fundamental
properties determining the oral absorption (Fa) of drugs.
Based on these properties, Amidon et al. [171] proposed the
biopharmaceutics classification system (BCS), which concep-
tually explores dose number, dissolution number, and absorp-
tion number as key determinants of Fz (Fig. 5). This frame-
work enabled the use of i vitro data rather than expensive
in vivo human studies for establishing the bioequivalence of
low risk (BCS Class I) compounds [172]. According to the
US FDA guidance [172], a drug substance is considered high-
ly soluble when the highest dose strength 1s soluble in 250 mL
or less of aqueous media over the pH range of 1-7.2. Tools
including 2 vitro epithelial cell culture models, that are appro-
priately validated to predict the extent of drug absorption in
humans are used for permeability classification [173—175].
While the pharmaceutical industry has taken advantage of
BCS-based biowaivers, its principles are used throughout the
drug discovery and development to drive orally active pro-
grams [173]. On the basis of the apparent correlation between
intestinal permeability rate and extent of drug metabolism,
Benet and coworkers proposed the biopharmaceutics drug
disposition classification system (BDDCS) where drugs are
categorized in terms of the extent of metabolism and solubility
[65, 176, 177]. The group noted that the major route of elim-
ination in humans for a majority of high-permeability
BDDCS Class 1 and Class 2 drugs was an extent of metabo-
lism >70%; while the major route of elimination for the poorly
permeable (BDDCS Class 3 and 4) drugs was renal and/or
biliary excretion of unchanged drug with an overall extent of
metabolism <30%. Based on their dataset, which is also con-
current to this analysis, most drugs are either very highly me-
tabolized or very poorly metabolized, and relatively few drugs
showed extent of metabolism between 30 and 70% [63].
BDDCS provided an alternative framework for extending
biowaivers for drugs with extensive metabolism (>90% metab-
olized), but have no definitive human permeability or Fa in-
formation [26]. However, based on the established concor-
dance between the membrane permeability and the extent
of drug metabolism, if an efficient measure of permeability is
obtained, it would be possible to use permeability to predict if
the major route of elimination for NME is metabolism or
renal/biliary [61].

Since 2005, BDDCS played a key role in shifting our un-
derstanding on the prediction of drug disposition and fate
early on in drug discovery [65]. However, BDDCS classifies
compounds based on their extent of elimination and solubility
(Fig. 5), and has limited utility in predicting the rate-
determining clearance mechanism. First, extent of metabolism
is not a reflection of the clearance rate, as discussed in the
previous sections. To reiterate, drugs such as atorvastatin,
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Fig. 5 Framework of (@) BCS for predicting oral drug absorption, (b) P

BDDCS for predicting drug disposition — major route of elimination, and (c)
ECCS for predicting the predominant clearance mechanism.

fluvastatin, cerivastatin, and telmisartan, are extensively me-
tabolized with an extent of metabolism higher than 70%,
however, what determines their clearance rate is the active
uptake mediated via hepatic uptake transporters, OATP1B1
and 1B3 [27]. Inhibitors of these transporters have a more
profound impact on the pharmacokinetics compared to
CYP inhibitors, which 1s a reflection that hepatic uptake is
the rate-determining process (Fig. 4). Focusing on extent of
metabolism would potentially misguide drug design to pri-
marily focus on the metabolism as a clearance mechanism
rather than uptake. Second, it is generally considered that
BDDCS Class 1 compounds are not influenced by trans-
porters located in the liver and/or intestine. It is interesting
to note that drugs such as cerivastatin and fluvastatin are part
of this class and inhibitors of OATPI1BI such as rifampicin
and cyclosporine have more significant impact on their dispo-
sition relative to CYP inhibitors (Fig. 4). ECCS differentiates
such drugs (Class 1B) from those metabolically cleared
(Class1 A and 2).

Thirdly, solubility is a fundamental principle for oral ab-
sorption as only drug in solution has the ability to permeate
across enterocytes. Therefore, solubility classification is vital in
identifying BCS and BDDCS Class! drugs to support a
biowaiver package for bioavailability and bioequivalence stud-
ies. However, it 1s not directly relevant to drug clearance.
Aqueous solubility is an indirect measure of lipophilicity,
which is also reflected in membrane permeability.
Characterizing solubility classes for BCS and BDDCS at the
early discovery stage is limited due to (1) the lack of availability
of material in a crystalline form, resources involved and feasi-
bility of high throughput solubility measures and (it) uncertain-
ty around the final salt form and maximum oral dose in the
clinic. Additionally, we do not believe that solubility classes
would provide any additional information to understand the
clearance mechanisms or elimination routes. For instance,
elimination route for both BDDCS Class 3 and 4 drugs are
renal or biliary. Therefore, a fundamental principle, namely
lonization state, is suggested as an integral variable in the
ECCS framework. While ECCS Class 3B could not differen-
tiate between renal and hepatic uptake mechanisms, com-
pounds of ECCS Class 3A and 4 are generally renally cleared
(Fig. 5c). As discussed earlier, ionization state is the key molec-
ular property defining the ADME characteristics and 1s easily
obtained from the chemical structure using either i silico tools
or in vitro tools [178, 179]. Finally, unlike BCS and BDDCS,
ECCS cannot be applied for biowaivers purposes as it does not
consider solubility and formulation aspects of oral absorption.
Nevertheless, the permeability cut-off for ECCS classification
was initially derived based on sigmoidal relationship between
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Class 1

Oral absorption complete (>90%).

Class 2

Oral absorption is solubility-
limited.

Class 3

Oral absorption is permeability-
limited.

Class 4

Oral absorption limited by both
solubility and permeability.

High Solubility Low Solubility
Class 1 Class 2

Metabolism is predominant route
of elimination (270%).
Oral absorption complete (>90%).

Metabolism is predominant route
of elimination (270%).

Oral absorption is solubility-
limited.

Class 3

Renal and/or biliary elimination of
unchanged drug is predominant
route (270%).

Oral absorption is permeability-
limited.

Class 4

Renal and/or biliary elimination of
unchanged drug is predominant
route (270%).

Oral absorption limited by both
solubility and permeability.

High Solubilit Low Solubilit

Class 1A Class 1B Class 2
Clearance Clearance Clearance determined by metabolism
determined by determined by (270%).
metabolism hepatic uptake Eliminated as metabolites (270%).
(270%). (270%). Absorption is not permeability-limited.
Eliminated as Eliminated as
metabolites metabolites
(270%). (270%).

Absorption is not Absorption is not
permeability- permeability-
limited. limited.

Class 3A Class 3B Class 4
Clearance Clearance Clearance determined by renal
determined by determined by (270%).
renal (270%). hepatic uptake or Eliminated as parent in urine (270%).
Eliminated as renal (270%). Absorption is permeability-limited.
parent in urine Eliminated as
(270%). parent in bile or
Absorption is urine (270%).
permeability- Absorption is
limited. permeability-

limited.
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permeability and human intestinal absorption (Fa) [61], and
thus provides an early indication as to whether absorption may
be permeability-imited. Comparison of BCS and BDDS to
ECCS are valuable analyses, since the latter represents a
significant extension of these earlier frameworks by describing
the impact of physiochemistry and permeability on predomi-
nant clearance mechanism. Other representations of the
extended clearance concept [9, 11, 14, 27], such as the
Hepatic Clearance Classification System [180] and Extended
Clearance Model [20] have been published recently, and are
different to the ECCS due to their focus on hepatic clearance
and dependence on a range of i vitro measurements, and thus
differ in the scope of application in early drug design.

CONCLUSIONS

In the drug design phase, an earlier understanding of the
predominant clearance mechanism in a chemical series, in-
creases efficiency by focusing on optimizing the right ADME
parameters to enable the rapid identification of a “best-in-
class” clinical candidate that is devoid of drug interaction risk
and capable of robustly testing the mechanism in humans.
Understanding the rate-determining clearance mechanism
of a drug candidate is a pre-requisite for the successful predic-
tion of clinical pharmacokinetics and DDIs, as well as deter-
mining the impact of genetic variations of metabolizing en-
zymes and transporters on drug exposure. The proposed
ECCS framework enables the early identification of the clear-
ance mechanism, based on membrane permeability and com-
pound ionization, obtained using high throughput i vitro or in
stlico tools. This classification scheme successfully predicted the
predominant clearance mechanism for approximately 92% of
the compounds evaluated. Overall, ECCS increases efficiency
by providing the basis to determine the right i vitro and in vivo
experimental approach(es) to be conducted for timely and
reliable prediction of clearance and pharmacokinetics in
humans.
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